Notes: 1) With a di/dt of 100 A/µs

<sup>2)</sup> A list of corresponding tests is available

#### LEM Components

## **Current Transducer LT 4000-S**

For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

# Electrical data

CE

| I <sub>PN</sub><br>I <sub>P</sub>   | Primary nominal r.m.s. current<br>Primary current, measuring range |                                | 4000<br>0 ± 6000       |           | A<br>A          |  |  |  |
|-------------------------------------|--------------------------------------------------------------------|--------------------------------|------------------------|-----------|-----------------|--|--|--|
| $\mathbf{R}_{_{\mathrm{M}}}$        | Measuring resistance                                               |                                | $R_{M \min}$           | $R_{Mma}$ | IX              |  |  |  |
|                                     | with ± 24 V                                                        | @ ± 4000 A <sub>max</sub>      | 0                      | 10        | Ω               |  |  |  |
|                                     |                                                                    | @ ± 6000 A <sub>max</sub>      | 0                      | 2         | Ω               |  |  |  |
| I <sub>sn</sub>                     | Secondary nominal r.m.s. current                                   |                                | 800                    |           | mA              |  |  |  |
| K <sub>N</sub>                      | Conversion ratio                                                   |                                | 1:5000                 |           |                 |  |  |  |
| V <sub>c</sub>                      | Supply voltage (±5%)                                               | )                              | ± 24                   |           | V               |  |  |  |
| I <sub>c</sub>                      | Current consumption                                                |                                | $35(@\pm 24V)+I_{S}mA$ |           | ς mA            |  |  |  |
| Ŭ <sub>d</sub>                      | R.m.s. voltage for AC isolation test, 50 Hz, 1 mn                  |                                | 6                      |           | <sup>°</sup> kV |  |  |  |
| Accuracy - Dynamic performance data |                                                                    |                                |                        |           |                 |  |  |  |
| <b>X</b> <sub>G</sub>               | Overall accuracy @ $I_{_{PN}}$                                     | , <b>T</b> <sub>A</sub> = 25°C | ± 0.5                  |           | %               |  |  |  |

| e                                 | Linearity                                                                                                   |               | < 0.1               |                       | %                 |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------|---------------|---------------------|-----------------------|-------------------|
| l <sub>o</sub><br>I <sub>ot</sub> | Offset current @ $I_p = 0$ , $T_A = 25^{\circ}C$<br>Thermal drift of $I_o$                                  | - 25°C + 70°C | Тур<br>± 0.6        | Max<br>± 0.8<br>± 0.8 | mA<br>mA          |
| t,<br>di/dt<br>f                  | Response time <sup>1)</sup> @ 90 % of $I_{p max}$ di/dt accurately followed<br>Frequency bandwidth (- 1 dB) |               | < 1<br>> 50<br>DC 1 |                       | μs<br>A/μs<br>kHz |

### General data

| T <sub>A</sub><br>T <sub>s</sub><br>R <sub>s</sub><br>m | Ambient operating temperature<br>Ambient storage temperature<br>Secondary coil resistance @ $T_A = 70^{\circ}C$<br>Mass<br>Standards <sup>2)</sup> | - 25 + 70<br>- 40 + 85<br>15<br>6<br>EN 50178 | °C<br>°C<br>Ω<br>kg |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------|
|                                                         | Stanuarus                                                                                                                                          | EN 30176                                      |                     |
|                                                         |                                                                                                                                                    |                                               |                     |

 $I_{PN} = 4000 \text{ A}$ 

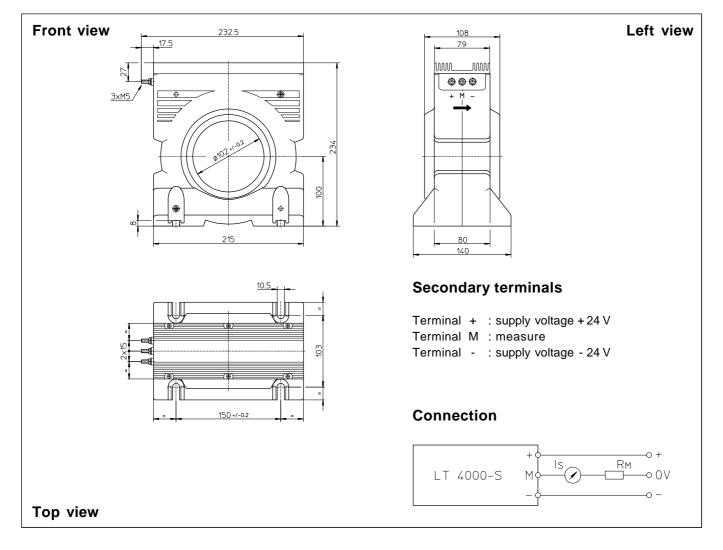


#### Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

#### Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


#### Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

www.lem.com

980728/8

#### Dimensions LT 4000-S (in mm. 1 mm = 0.0394 inch)



#### **Mechanical characteristics**

- General tolerance
- Fastening
- Primary through-hole
- Connection of secondary fastening torque
- ± 1.0 mm 4 holes Ø 10.5 mm Ø 102 mm
- M5 threaded studs 2.2 Nm

#### Remarks

- $I_s$  is positive when  $I_p$  flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.