Notes : 1) With a di/dt of 100 A/µs

²⁾ A list of corresponding tests is available

Current Transducer LT 4000-T

For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

CE

I _{PN}	Primary nominal r.m.s. cu	4000		А				
I _P	Primary current, measuring range		0 ± 6000		А			
Ŕ	Measuring resistance		$\mathbf{R}_{_{\mathrm{Mmin}}}$	R _{Mmax}				
	with ± 24 V	@ ± 4000 A _{max}	0	10	Ω			
		@ ± 6000 A _{max}	0	2	Ω			
I _{sn}	Secondary nominal r.m.s	800		mA				
K _N	Conversion ratio		1:500	0				
Vc	Supply voltage (± 5 %)		± 24		V			
ľ	Current consumption	$35(@\pm 24V)+I_{s} mA$						
Ŭ	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6		kV			
Accuracy - Dynamic performance data								
x	Overall accuracy @ $I_{_{PN}}$, T	- 25°C	± 0.5		%			
X _G	Linearity	_A = 23 C	± 0.5		%			
U_L	Linearity		< 0.1		/0			
			Тур	Max				
I _o	Offset current @ $I_p = 0$, T_p	_A = 25°C		± 0.8	mA			

t _r	Response time ¹⁾ @ 90 % of I _{P max}
di/dt	di/dt accurately followed

f Frequency bandwidth (- 1 dB)

General data

T _A T _S R _S m	Ambient operating temperature Ambient storage temperature Secondary coil resistance @ $T_A = 70^{\circ}C$ Mass Standards ²	- 25 + 70 - 40 + 85 15 12.1 EN 50178	°C °C Ω kg
	Standards ²⁾	EN 50178	
	Standards 2)	EN 50178	

Features

- · Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

μs

A/µs

kHz

< 1

> 50

DC .. 100

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

4000 A I_{PN}

Dimensions LT 4000-T (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary Fastening torque

± 1 mm

4 holes \varnothing 10.5 mm or by the primary bar 8 holes \oslash 13 mm M5 threaded studs 2.2 Nm or 1.62 Lb - Ft

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.